Congenic strains confirm aerobic running capacity quantitative trait loci on rat chromosome 16 and identify possible intermediate phenotypes.

نویسندگان

  • Justin A Ways
  • Brian M Smith
  • John C Barbato
  • Ramona S Ramdath
  • Krista M Pettee
  • Sarah J DeRaedt
  • David C Allison
  • Lauren G Koch
  • Soon Jin Lee
  • George T Cicila
چکیده

We previously identified two inbred rat strains divergent for treadmill aerobic running capacity (ARC), the low-performing Copenhagen (COP) and the high-performing DA rats, and used an F(2)(COPxDA) population to identify ARC quantitative trait loci (QTLs) on rat chromosome 16 (RNO16) and the proximal portion of rat chromosome 3 (RNO3). Two congenic rat strains were bred to further investigate these ARC QTLs by introgressing RNO16 and the proximal portion of RNO3 from DA rats into the genetic background of COP rats and were named COP.DA(chr 16) and COP.DA(chr 3), respectively. COP.DA(chr 16) rats had significantly greater ARC compared with COP rats (696.7 +/- 38.2 m vs. 571.9 +/- 27.5 m, P = 0.03). COP.DA(chr 3) rats had increased, although not significant, ARC compared with COP rats (643.6 +/- 40.9 m vs. 571.9 +/- 27.5 m). COP.DA(chr 16) rats had significantly greater subcutaneous abdominal fat, as well as decreased fasting triglyceride levels, compared with COP rats (P < 0.05), indicating that genes responsible for strain differences in fat metabolism are also located on RNO16. While this colocalization of QTLs may be coincidental, it is also possible that these differences in energy balance may be associated with the superior running performance of COP.DA(chr 16) consomic rats.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A genome scan for Loci associated with aerobic running capacity in rats.

Aerobic capacity is a complex trait that defines the efficiency to use atmospheric oxygen as an electron acceptor in energy transfer. Copenhagen (COP) and DA inbred rat strains show a wide difference in a test for aerobic treadmill running and serve as contrasting genetic models for aerobic capacity. A genome scan was carried out on an F(2)(COP x DA) segregating population (n=224) to detect qua...

متن کامل

Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat

We previously mapped hypertension-related insulin resistance quantitative trait loci (QTLs) to rat chromosomes 4, 12 and 16 using adipocytes from F2 crosses between spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats, and subsequently identified Cd36 as the gene underlying the chromosome 4 locus. The identity of the chromosome 12 and 16 genes remains unknown. To identify whole-body phe...

متن کامل

Interaction between blood pressure quantitative trait loci in rats in which trait variation at chromosome 1 is conditional upon a specific allele at chromosome 10.

We have used inbred and congenic rat strains in F(2) segregation studies to discover epistasis in a polygenic model of hypertension. Previously, we have found evidence that the presence of a blood pressure quantitative trait locus (QTL) on chromosome 1 is conditional upon the allele status of chromosome 10. To prove the existence of an epistatic interaction we have analyzed congenic strains for...

متن کامل

Linkage analysis of microsatellite markers on chromosome 5 in an F2 population of Japanese quail to identify quantitative trait loci affecting carcass traits

An F2 Japanese quail population was developed by crossing two strains (wild and white) to map quantitative trait loci (QTL) for performance and carcass traits. A total of 472 F2 birds were reared and slaughtered at 42 days of age. Performance and carcass traits were measured on all of the F2 individuals. Parental (P0), F1 and F2 individuals were genotyped with 3 microsatellites from quail chrom...

متن کامل

Interaction between chromosome 2 and 3 regulates pulse pressure in the stroke-prone spontaneously hypertensive rat.

In an F2 cross between stroke-prone spontaneously hypertensive (SHRSP) and Wistar Kyoto (WKY) rats, we previously identified blood pressure quantitative trait loci (QTL) on rat chromosome (RNO) 2 and a pulse pressure QTL on RNO3. The aims of this study were to confirm the QTL on RNO3 and to investigate interaction between RNO2 and RNO3 loci through the generation and phenotypic assessment of si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological genomics

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 2007